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INTEGRABLE AND CHAOTIC MOTIONS OF FOUR VORTICES
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Conclusive numerical evidence of chaos in the four-vortex problem is presented using the method of Poincaré€ sections.
The problem is formally reduced to a two degrees of freedom hamiltonian. The advection of a passive marker by three vor-

tices displays chaos.

The hamiltonian dynamics of a system of NV point
vortices [1] has the remarkable property of being in-
tegrable for NV = 3 [2,3]. Recent numerical experi-
ments by Novikov and Sedov [4,5] (see also ref. [6])
suggest that already a system of four identical vortic-
es will display chaotic motions. In this letter we report
on similar experiments, at considerably higher numer-
ical resolution, that show conclusively the onset of
large scale chaos.

We first describe an intuitive way of producing
“Poincaré sections” for the motion of four identical
vortices. Labelling the vortices 1-4 we focus on their
relative positions in the 8-dimensional configuration
space of points (x, ). It is well known that the same
coordinates define the system phase space [1]. As
basic variables we consider six-tuples of euclidean
separations (dyy, dy3,d14, d23,d24, d34)- There is 2
geometrical constraint on these six separations; only
five of them are independent. There are furthermore
two dynamical constraints, one coming from the con-
servation of angular momentum,

d%z + d%3 + d%4 + d%3 + d%4 +d%4 = constant , H
the other,

d12d13d14d23d24d34 = constant , (2)

from conservation of the kinetic energy of interaction
of the vortices [1]. Hence, a system point in the space
of separation six-tuples is constrained to move on
some bounded three-dimensional manifold depending
on the values of the isolating integrals (1) and (2). As
the motion evolves we monitor the separations, and
to define a sectlon record the values of the pair (d23,
d31) whenever d12 x and d;, > 0. Varying x we ob-
tain a one-parameter family of sections. Since the
vortices are identical any configuration produces by
simple relabelling 4! = 24 different initial conditions
with the same values of the integrals (1) and (2).

Figs. 1 and 2 show examples of sections. Due to a
discrete symmetry of the point vortex equations of
motion, configurations with the four vortices at the
vertices of a rectangle define periodic solutions which
yield a single point in a section of this type. Such fix-
ed points are shown as crosses. Fig. 1 was produced
by perturbing (in five different ways) a rectangle of
aspect ratio 1.5 and making use of the permutation
symmetry. A total of approximately 1.5 X 10 time
steps was necessary to produce fig. 1 resulting in a

297



Volume 78A, number 4

B8 e ea e i

Tl

23 5

Fig. 1. Poincaré€ section for perturbations of aspect ratio 1.5
rectangle configuration (x = 0.75).

total of 10 332 points in the section. The integral (2)
was conserved to within one part in 107 during inte-
gration. The other integrals, (1) and the position of
the center of vorticity, were conserved to much higher
accuracy since they arise from spatial symmetries of
the interaction [1]. Halving the time step in the fifth
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Fig. 2. Poincaré section for perturbations of centered equilater-
al triangle configuration (x = 0.75).
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order Fehlberg Runge—Kutta time-stepping routine
used reproduced the plotted points to at least five
digits. This is beyond the plotter accuracy.

A large number of apparently smooth curves are
visible in the section of fig. 1 suggesting at least ap-
proximate integrability in the vicinity of the periodic
orbit. We remark that the intersections of the curves
seen in fig. 1 are not in conflict with uniqueness prop-
erties of the solution. The six separations do not unique-
ly specify a configuration. We also note that the result
in fig. 1 is consistent with the KAM theorem [7] which
in the case at hand would say that the system is pre-
dominantly integrable in the vicinity of the stable,
uniformly rotating, square configuration (aspect ratio
unity).

By contrast, fig. 2 shows the section resulting from
a singly perturbation of the centered equilateral
triangle configuration. This section contains approxi-
mately 20 000 points and represents in effect a proba-
bility density in phase space. Qualitative differences
also appear in plots of the real space trajectories of
the vortices. The random splatter of points seen in
fig. 2 has been reproduced with shorter, time revers-
ible runs. We may add that the Poincaré section for
perturbations of an aspect ratio 2 rectangle showed
similar evidence of chaos.

It is possible ahd desirable to reproduce the pre-
ceding results using a more systematic approach. We
have used a sequence of canonical transformations to
reduce the problem of four identical vortices to a two
degrees of freedom hamiltonian. The key ingredient
in these formal developments is the following trans-
formation (written here for arbitrary NV):

N
g, +ip, =N—12 2 z, exp[i2m(a— 1)/N],
a=1

(3)
n=0,1,...N—1,

i.e. a discrete Fourier transform (DFT) of the positions,
z, =X, *tiy,, considered as an array of complex

data *!. As anticipated by the notation the variables
4y, Dy, are canonically conjugate. Further g, p are
constants of the motion and hence do not appear in
the transformed hamiltonian. Introducing “action-
angle” variables J,,, 6, by

#1 We are indebted to R. Littlejohn for pointing out this trans-
formation.
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Q)2 exp(i6,) =q, *+ip,, » )

we then notice, that the hamiltonian depends on the
angles only through the combinations §; — 65, 8,

- 05. Also by Parseval’s theorem applied to the
DFT, eq. (3),Jy +J, tJ3 =13 is a constant of the
motion. A final canonical transformation with gener-
ating function [8]

=¢1(Jy = J3) + ¢ (Jy +J3) t d3(Jy t Iy +J3)
then produces a reduced hamiltonian,

H([l912’ ¢15¢2)= —(4ﬂ)_1 log [h(11’12’¢15¢2)] >

with two degrees of freedom. By a rescaling of time
we may consider the argument of the logarithm, 4, to
be the governing hamiltonian for given initial condi-
tions. The explicit expression for A is cumbersome
involving 14 terms of the form f,,,,, cos (m¢; +ng,),
where m, n are integers and the coefficients are al-
gebraic functions of 1y, I, with Iy as a parameter. It

is reminiscent of but more complicated than hamil-
tonians appearing in problems with coupled oscillators,
known to produce chaotic motions due to the phe-
nomenon of resonance overlap [9]. Numerical com-
putations based on this representation corroborate

the conclusions from figs. 1 and 2. We note in passing
that by steps analogous to (3)—(6) the problem of
three identical vortices may be reduced to a one degree
“of freedom hamiltonian, the action variable having the
physical interpretation of the area of the vortex
triangle. Explicit expressions in terms of Jacobi elliptic
functions may then be obtained for the variation in
time of the relative configuration of the vortices, pro-
viding a more detailed solution of this problem than
in previous work [2,3].

Certain other four-vortex problems are potentially
of greater interest than the motion of identical vor-
tices. We have considered what may be called the
“restricted” four-vortex problem, i.e. the advection
of a passive marker particle (a “vortex” of strength
zero) by three identical vortices. Here resonant interac-
tion between rotation of the marker and the relative
motion of the vortices leads to stochasticity. Figs. 3
and 4 show sequences of positions of the marker
particle at time intervals equal to the period of relative
motion of the vortices. In fig. 3 the angular velocity
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Fig. 3. Stroboscopic point plot of passive marker advected by
three vortices. Initial vortex positions ¢, marker position e.

of the marker particle was chosen too small for reso-
nance and the stroboscopic point plot reveals an ap-
parently smooth curve. In fig. 4 on the other hand
the distance of the marker particle from the centroid
was decreased, with a consequent increase in angular
velocity, and a chaotic splatter of points ensues. We
note that although in the continuum limit the advec-
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Fig. 4. Stroboscopic point plot of passive marker advected by
three vortices. Initial vortex positions ©, marker position ®.
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tion of a passive marker is governed by a linear equa-
tion, and is thus often considered to be simpler than
the flow dynamics itself, this example shows just the
opposite: The motion of three vortices is integrable;
the motion of a particle advected by their velocity
field is non-integrable, hence infinitely more compli-
cated.

Finally we have considered the collision of two vor-

tex pairs. Again the discrete symmetries yield inte-
grable solutions, e.g. coaxial pairs [10] or two pairs
with opposite velocities of equal magnitude, and again
we expect chaotic motions when these symmetries are
broken, now in the context of a scattering problem.
We speculate that one consequence of the very sensi-
tive dependence on initial conditions is that the scat-
tering angle may be considered a random variable,
large ranges of scattering angle corresponding to small
changes in impact parameter. This suggests interesting
simple models of the collision term in the kinetics of a
“dilute gas” of vortex pairs. A detailed account of the
work reported here will appear elsewhere.

We are indebted to F. Henyey and P. Holmes for
discussion. We thank E.A. Novikov and the authors of
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ref. [6] for altering us to their work. This work was
supported by NSF grant ATM 78-16411 and by ONR
contract N00014-78-C-0050.
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